skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Keene, Clayton"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Leveraging computational resources for modern physics education has become increasingly prevalent, especially catalyzed by the COVID-19 pandemic when distance learning is widely implemented. Herein, we report an open-source software for students and instructors to on-demand simulate optical reflection behaviors of one-dimensional photonic crystals (1D-PCs), a model system for understanding light–matter interactions relevant to materials science and optical physics. Specifically, our MATLAB application, ReflectSim, employs an adapted transfer matrix method simulation and can account for the effects of several critical material design parameters, including interfacial roughness and layer geometry, to determine the reflectance spectrum of user-defined 1D-PCs. By packing our codes into a graphical user interface, this software is simple to use and bypass the requirement of any coding experiences from users, which can be widely used as an education tool in high school/undergraduate classrooms and K-12 outreach activities. We believe that ReflectSim provides great potential for assisting students in understanding optical phenomenon in nanostructured layered materials and relevant scientific concepts through enabling more engaging learning experiences. 
    more » « less